Knowledge-Enhanced Prompt-Tuning for Stance Detection

نویسندگان

چکیده

Investigating public attitudes on social media is important in opinion mining systems. Stance detection aims to analyze the attitude of an opinionated text (e.g., favor, neutral, or against) toward a given target. Existing methods mainly address this problem from perspective fine-tuning. Recently, prompt-tuning has achieved success natural language processing tasks. However, conducting for stance real-world remains challenge several reasons: (1) The form usually short and informal, which makes it difficult design label words verbalizer. (2) tweet may not explicitly give attitude. Instead, users use various hashtags background knowledge express stance-aware perspectives. In article, we first propose prompt-tuning-based framework that performs cloze question manner. Specifically, knowledge-enhanced (KEprompt) method designed, consists automatic verbalizer (AutoV) injection (BKI). AutoV, introduce semantic graph build better mapping predicted word pretrained model labels. BKI, topic learning hashtag representation ConceptGraph as supplement At last, present challenging dataset detection, where all categories are expressed implicit Extensive experiments large demonstrate superiority KEprompt over state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

islanding detection methods for microgrids

امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...

15 صفحه اول

360{\deg} Stance Detection

The proliferation of fake news and filter bubbles makes it increasingly difficult to form an unbiased, balanced opinion towards a topic. To ameliorate this, we propose 360° Stance Detection, a tool that aggregates news with multiple perspectives on a topic. It presents them on a spectrum ranging from support to opposition, enabling the user to base their opinion on multiple pieces of diverse ev...

متن کامل

Exploring Various Linguistic Features for Stance Detection

In this paper, we describe our participation in the fourth shared task (NLPCC-ICCPOL 2016 Shared Task 4) on the stance detection in Chinese Micro-blogs (subtask A). Different from ordinary features, we explore four linguistic features including lexical features, morphology features, semantic features and syntax features in Chinese micro-blogs in stance classifier, and get a good performance, wh...

متن کامل

A Dataset for Multi-Target Stance Detection

Current models for stance classification often treat each target independently, but in many applications, there exist natural dependencies among targets, e.g., stance towards two or more politicians in an election or towards several brands of the same product. In this paper, we focus on the problem of multi-target stance detection. We present a new dataset that we built for this task. Furthermo...

متن کامل

Stance Detection for Fake News Identification

The latest election cycle generated sobering examples of the threat that fake news poses to democracy. Primarily disseminated by hyper-partisan media outlets, fake news proved capable of becoming viral sensations that can dominate social media and influence elections. To address this problem, we begin with stance detection, which is a first step towards identifying fake news. The goal of this p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Asian and Low-Resource Language Information Processing

سال: 2023

ISSN: ['2375-4699', '2375-4702']

DOI: https://doi.org/10.1145/3588767